IATEX Gravitational Lens Detection and Regression with ResNet and CNN
Architectures

Onyinyechi Okoye
Stanford University

onyie@stanford.edu

Abstract

Gravitational lensing enables critical cosmological
analyses, but detecting lensing events in survey data re-
mains difficult due to low signal-to-noise ratios, diverse
morphologies, and imaging artifacts. We present an end-
to-end pipeline for strong gravitational lens detection and
parameter estimation using deep convolutional neural net-
works (CNNs) and residual networks (ResNets), trained on
both idealized and photorealistic simulated data. We evalu-
ate multiple architectures on real HST images (CASTLES
and COSMOS), and explore generalization under varied
simulation fidelity. Our approach includes a classification
model and a regression branch to predict Einstein radii. We
find that deeper ResNet-18 models significantly outperform
shallow CNNs on real test data, and that training on re-
alistic simulations improves precision and recall. Extensive
ablation studies and Grad-CAM visualizations illustrate the
importance of network depth, simulation fidelity, and trans-
fer learning for robustness. These results provide a strong
foundation for scalable lens detection in future wide-field
surveys.

1. Introduction

Gravitational lensing, the bending of light by massive ce-
lestial bodies, is an invaluable phenomenon in astrophysics,
enabling researchers to probe the distribution of dark mat-
ter, refine cosmological parameters such as the Hubble con-
stant, and study distant galaxies otherwise beyond observa-
tional reach. However, accurately detecting and classify-
ing gravitational lensing events from extensive astronomi-
cal surveys remains challenging. Issues such as low signal-
to-noise ratios, varied lensing morphologies (rings, arcs, or
multiple images), contamination from galaxy blends, and
imaging artifacts significantly complicate the detection pro-
cess. Historically, lens detection has relied heavily on man-
ual inspection by experts or basic image processing meth-
ods, approaches limited by their inefficiency, subjective bi-

ases, and scalability constraints.

Motivated by these limitations, we propose a robust auto-
mated approach leveraging modern deep learning method-
ologies for the detection and characterization of gravita-
tional lenses. Specifically, we utilize simulated gravita-
tional lens images to train and evaluate deep convolutional
neural networks (CNNs), with particular emphasis on resid-
ual network (ResNet) architectures. To rigorously assess
model robustness and generalization, we employ two train-
ing regimes: one using simplified simulations and another
incorporating realistic imaging effects such as PSF variabil-
ity, noise, foreground stars, and cosmic ray artifacts.

Our classification models are evaluated on real observa-
tional data—positive examples from the CASTLES dataset
and negative examples from COSMOS—to assess real-
world applicability. In addition to binary classification, im-
plement a regression branch that estimates the Einstein ra-
dius, a key physical parameter of lensing strength, directly
from image features. This regression task is trained and
tested on simulated data to isolate modeling performance
under clean, controlled conditions.

To understand the key drivers of model performance
and generalization, we perform a series of ablation studies
comparing architecture depth (CNN vs. ResNet-18), train-
ing data realism, loss functions (binary cross-entropy, focal
loss), and transfer learning strategies (ImageNet pretraining
vs. random initialization). Additionally, we employ Grad-
CAM saliency maps to interpret model behavior and iden-
tify failure modes, revealing how networks respond to lens
features and confounding structures in real images.

This comprehensive experimental framework not only
benchmarks the effectiveness of deep CNN and ResNet
models for lens detection, but also highlights critical chal-
lenges in domain adaptation and simulation fidelity. Our
findings suggest that realistic simulations and pretrained
deep networks significantly improve real-data performance,
while shallow architectures and simplistic simulations often
lead to overfitting. Ultimately, this work lays the founda-
tion for scalable, interpretable gravitational lens detection
pipelines applicable to future large-scale sky surveys.

2. Related Work
2.1. Traditional Arc-Finding Approaches

Early methods for gravitational lens detection relied on
explicit image processing techniques to identify characteris-
tic arc or ring structures. Cabanac et al. [1]] applied classical
image-processing approaches, including Hough transforms
and curvature filtering. Similarly, Sonnenfeld et al. [10]
used a ring detection algorithm on Hyper Suprime-Cam im-
ages, though performance was limited by calibration sensi-
tivity.

2.2. Machine Learning and Deep Learning Ap-
proaches

Jacobs et al. [6l 5] applied CNNs to CFHTLS and DES,
achieving strong recall and robustness compared to classical
methods. Lanusse et al. [7]] developed a deep ResNet-based
model (CMU DeepLens), winning the Bologna Lens Chal-
lenge with AUROC 0.98.

Hartley et al. [3]] explored SVMs for lens candidate clas-
sification, obtaining good performance but requiring hand-
crafted features.

2.3. Transformer and Attention-Based Methods

Transformers [12] have recently shown promise in as-
tronomy. Thuruthipilly et al. [L1] applied transformer-
encoder models to the Bologna Lens Challenge and out-
performed CNNs on several key metrics (TPRO, TPR10).
Dosovitskiy et al. [2] also showed ViTs outperform CNNs
on general vision benchmarks.

2.4. Interpretability and Robustness Studies

Jacobs et al. [4] introduced sensitivity probes to iden-
tify neural network biases in lens detection. Their findings
revealed that network decisions vary with PSF, color, and
Einstein radius, stressing the need for dataset-aware evalu-
ation.

2.5. Existing Dataset and Benchmarks

Benchmarks such as the Bologna Lens Challenge [[8] and
CASTLES/COSMOS are essential for evaluating general-
ization. Petrillo et al. [9] applied a ResNet to the KiDS
dataset and achieved automated discovery of new lenses,
demonstrating the value of large annotated surveys.

2.6. Gap Analysis and Opportunities

Despite recent progress, challenges remain in detecting
faint/small-radius lenses. As noted by Jacobs et al. [4] and
Thuruthipilly et al. [L1], current models are highly sensi-
tive to simulation biases. Improving domain adaptation and
robustness remains a key direction.

2.7. Summary of Related Work

Deep learning, especially CNN and transformer mod-
els, currently dominate lens detection research. While these
models show high accuracy and precision, generalization
and interpretability challenges remain—especially across
varied survey conditions and faint lens populations.

3. Methods

In this project, we develop and evaluate deep learning-
based pipelines for detecting strong gravitational lensing
signatures in astronomical images. Our objectives in-
clude: (1) training CNN-based classifiers to distinguish
lensing from non-lensing images using synthetic and re-
alistic datasets, (2) comparing shallow and deep architec-
tures, (3) performing Einstein radius regression on synthetic
lenses, and (4) isolating the effects of network depth, data
realism, loss functions, and augmentation via controlled ab-
lations.

We implement both custom CNNs and standard ResNet
models, using both binary classification and continuous re-
gression objectives. All models are trained on simulated
data and evaluated on real survey cutouts from CASTLES
(positive) and COSMOS (negative) to quantify generaliza-
tion.

3.1. Problem Formulation

We formalize two supervised learning tasks:

e Binary Classification: Given an image X €
RHXWXC predicty € {0, 1}, where 1 denotes a grav-
itational lens. We learn a mapping § = fy(X), where
9 € 10, 1] is the model’s confidence.

* Einstein Radius Regression: Given the same input
X, predict a scalar y € R>(representing the Einstein
radius. The model is trained using mean squared error
between the predicted and true radius.

3.2. Data Preparation and Preprocessing

Simulated images are rendered using parameterized
gravitational lens models with a range of Einstein radii, red-
shifts, and background galaxies. Real cutouts are sourced
from the CASTLES and COSMOS surveys.

Images are clipped at the 1st and 99th intensity per-
centiles, scaled to [0, 1], and resized to 128 x 128 pixels.
Multi-band (g, r, i) images are stacked to form 3-channel
inputs; single-band images use grayscale. All files are
converted from FITS to PNG and preprocessed identically
across datasets. Dataset splits are 70% train, 15% valida-
tion, and 15% test.

3.3. Model Architectures

We compare two architectures:

 Shallow CNN: Three convolutional layers (kernel size
3x3), ReLU activation, and max pooling. Feature maps
are flattened and passed through two FC layers with
dropout (p = 0.5). Output layers use sigmoid (for
classification) or linear activation (for regression).

* ResNet-18 Standard residual networks with skip con-
nections:
Y, =F(X;, W) + X,

The input conv layer is modified for 1- or 3-channel
inputs. Final layers are replaced with either a sigmoid
unit or a scalar regression head.

All models are implemented in PyTorch and optionally
initialized with ImageNet weights.

3.4. Loss Functions and Optimization

For classification, we use binary cross-entropy (BCE):

N
1 . .
Lpcg = N ; [yilog §i + (1 — y;) log(1 — ;)]

For regression, we use mean squared error (MSE):

1 N
—_— Jp— A. 2
Lyisg = N gl(yz yl)

To address class imbalance, we experiment with
weighted BCE and focal loss:

Lfocal - 70‘(]- - g)’\/y log(g) - (1 - a)gw(l - y) IOg(l - Q)

We use o = 0.75 and v = 2, tuned via grid search. For
optimization, we adopt the AdamW optimizer with a learn-
ing rate of 1 x 10~ and weight decay also set to 1 x 1074,
A cosine annealing schedule is applied, incorporating a 5-
epoch linear warmup phase. The optimizer’s 3 parameters
are (0.9,0.999). We train using a batch size of 64 and im-
plement early stopping with a patience of 10 epochs.

3.5. Data Augmentation

To improve model robustness and reduce overfitting,
we apply a variety of data augmentations during training.
These include random rotations by multiples of 90° and
horizontal or vertical flips. We also introduce brightness
and contrast jittering, Gaussian noise with standard devi-
ation o sampled from the range [0.01,0.05], and simulate
point spread function (PSF) variability through Gaussian
blur with ¢ ranging from 1 to 3. All augmentations are
applied probabilistically and only during training.

3.6. Evaluation Metrics

For classification performance, we report accuracy, pre-
cision, recall, F1 score, and both the receiver operating
characteristic area under the curve (ROC AUC) and the
precision-recall area under the curve (PR AUC). Precision

: TP TP .
is defined as TPLEP" recall as TPIEN and the F1 score is

Precision-Recall
ComPUted as2- Precision+Recall *

For regression performance, we evaluate using the root
mean squared error (RMSE), mean absolute error (MAE),
and the coefficient of determination, R2.

3.7. Ablation Studies

To determine which factors drive real-world generaliza-
tion, we performed the following ablative experiments:

* Network Depth: Compared three architectures trained
on identical simulated data:

— Baseline CNN (2 convolutional layers + 2 fully con-
nected layers, ~0.1 M parameters)

— ResNet-18 (~8.7 M parameters)

This isolates how representation capacity affects transfer
from simulation to real COSMOS/CASTLES images.

» Simulation Fidelity: Trained each architecture twice:

— On “simplified” simulated cutouts
SIE+Sérsic, uniform background, fixed PSF)

(idealized

— On ‘“realistic” simulated cutouts (same lens+source
distributions, but with added PSF-sigma jitter, pho-
tometric augmentations, median-filter sky subtraction,
and star/cosmic masks)

This quantifies whether more photometric/PSF variation
in the simulated training set improves real-test perfor-
mance.

* Regularization (Dropout vs. No Dropout):

— Inserted Dropout(p = 0.5) after fully connected lay-
ers (Baseline CNN) or after the penultimate global-
pool layer (ResNets).

— Adding dropout reduced simulated-validation accuracy
(from ~100% to ~98%) without improving real-test
metrics. Therefore, all final models were trained with-
out dropout.

* Transfer Learning vs. Training from Scratch:

— For ResNet-18, compared ImageNet-pretrained
weights (fine-tuned on simulated data) vs. random
initialization.

— ImageNet pretraining yielded faster convergence on
simulated validation (loss — 0 by epoch 1 vs. epoch
2 from scratch), but final real-test metrics were nearly
identical. =~ We thus retained ImageNet pretrained
weights for all ResNet runs.

4. Dataset and Preprocessing
4.1. Simulated Dataset Generation

To train both classification and regression components of
our lens-finding pipeline, we generated two distinct sets of
synthetic FITS images. Specifically, we produced 40,000
total FITS stamps across two variants: 20,000 from a more
photorealistic simulation regime and 20,000 from a simpli-
fied (less realistic) regime. Each dataset includes 10,000
“lens” examples and 10,000 “non-lens” examples. Each
stamp has a native resolution of 128 x 128 pixels with a
pixel scale of 0.05" /pixel.

Lens simulations (10,000 per variant): Each fore-
ground lens is modeled as a Singular Isothermal Ellip-
soid (SIE) with randomly sampled parameters: Einstein
radius 0 ~ U(0.6,1.5) arcsec, axis-ratio offset Ag ~
4(0.0,0.3) (yielding ¢ = 1 — Agq), and orientation ¢ ~
U (0°,180°). The background source is a Sersic galaxy with
Iy ~ U(0.5,1.5), R, ~ U(0.1,0.3) arcsec, Sersic index
n ~ U(1.5,4.0), source axis-ratio g5 = 1 — Ag, where
Ags ~ U(0.0,0.4), and orientation ¢, ~ U(0°,180°).
PyAutoLens was used to ray-trace each lensing system onto
a uniform 128 x 128 pixel grid.

Non-lens simulations (10,000 per variant): These are
generated using unlensed Sersic profiles (same parameter
space as above) with no intervening mass, yielding similar
galaxy morphologies and noise structure but lacking arcs or
lensing features.

Simplified vs. Realistic Regimes: To evaluate the
model’s robustness to observational artifacts, we created:

 Simplified images: Gaussian PSF (opsg = 0.08"),
constant background (0.1 counts), and Poisson noise.

* Realistic images:
— Moffat PSF: (a, 8) ~ U(2.5,4.0); FWHM ~
4(0.07,0.12) arcsec; ellipticity e ~ 2/(0.0, 0.10)

- Sky gradient: S(z,y) = A + Bz + Cy, with
A ~U(0.05,0.15), B,C ~ U(—0.02,0.02)

— Foreground stars: 1-5 Gaussian sources per im-
age, amplitude ~ 1/(0.5,2.0); o ~ 1(0.8,1.5)
pixels

— Cosmic rays: 5-15 hot pixels per stamp with in-
tensities ~ (50, 150)

— Combined Poisson + Gaussian read noise:
Oread ~ U(0.01,0.05 x max I)

FITS headers include lensing and PSF metadata (e.g.,
EINRAD,

CASTLES dataset: 300 strong lens systems from the
CASTLES survey (HST/ACS F814W images). We cropped
and reprojected each to 128 x 128 pixels at 0.05” /pixel, cen-
tered on the lens position. Images were log-scaled I’ =
log,(1 + I), normalized to [0,1], and converted to 3-
channel RGB. Final resolution: 224 x224 (bicubic interpo-
lation).

COSMOS dataset: 300 non-lens galaxies from COS-
MOS 2015 (ACS F814W mosaic at 0.03"/pixel). We sam-
pled cutouts from areas with no known lenses (per Kajisawa
et al., 2019), re-binned to 0.05" /pixel, cropped to 128 x 128,
and resized to 224 x 224 after log-scaling and normalization.

4.2. Preprocessing Pipeline

All FITS images—both simulated and real—underwent
auniform preprocessing pipeline prior to model input. First,
we applied a log-transform to compress the dynamic range
using the formula I,o; = log,(1+1I). Next, we clipped any
negative values and normalized all pixel intensities to the
[0, 1] range. The resulting single-channel images were then
duplicated across three channels to create a 3-channel RGB
representation. Each image was resized from 128 x 128 to
224 x 224 pixels using bicubic interpolation via OpenCV.
Finally, the normalized floating-point arrays were cast to 8-
bit integers and saved as PNG files.

4.3. Augmentation and Normalization

During training, we applied several data augmentations
to improve model generalization and robustness. These in-
cluded horizontal and vertical flips, rotations by 0°, 90°,
180°, or 270°, as well as brightness and contrast jitter
within £10%. Additionally, we injected additive Gaussian
noise to simulate variability in photometric conditions.

All datasets were normalized to ImageNet statistics:

1 = [0.485,0.456,0.406], o = [0.229,0.224,0.225]

4.4. Dataset Splits
Subset Lens Non-Lens Total
Train (Simulated) 7000 7000 14000
Validation 1500 1500 3000
Test (Simulated) 1500 1500 3000
Test (Real) 300 300 600

Table 1: Dataset split by simulation type and source.

Each row in our metadata.csv file contains: file-
name, class label, data split, relative path, and simulated
lensing parameters (set to 0 for real images).

4.5. Feature Representation

No handcrafted features were used. All models ingest
224 x 224 x 3 RGB images. Feature learning is entirely
driven by learned convolutional filters. Grad-CAM visual-
izations (see Section ??) are used to inspect learned atten-
tion.

4.6. Summary

In total, we processed 20,000 realistic simulated PNGs
(train/val/test), 20,000 simplified ones for ablations, and
600 real HST images for evaluation. All images were stan-
dardized, labeled, and tracked through a unified metadata
pipeline.

5. Experiments, Results, and Discussion
5.1. Hyperparameters and Training Setup

All classification experiments (Baseline CNN, ResNet-
18, ResNet-34) used the same basic training recipe unless
noted otherwise. We trained for 10 epochs with early stop-
ping with a learning rate of 1 x 10~* and AdamW opti-
mizer (weight-decay = 1073), a batch size of 32, and no
dropout (we found that adding Dropout(p = 0.5) after the
fully connected layers reduced validation accuracy without
improving test performance). For data augmentation, dur-
ing training we applied random horizontal and vertical flips,
random 90° rotations (via RandomChoice), and ColorJit-
ter with brightness and contrast +10%. Images were then
converted to tensors and normalized to ImageNet statistics
(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])
for ResNet models, or to mean = 0.5, std = 0.5 for the
Baseline CNN. We observed that, on both “simplified” and
“realistic” simulated training sets, each network’s training
loss dropped toward zero and simulated validation accuracy
reached 100% by the end of the first epoch. We interpret
such rapid convergence as a sign that the simulated distri-
butions are relatively easy to fit, leading to potential over-
fitting to simulation artifacts rather than robust, real-world
features.

For the Einstein-radius regression task, we replaced
ResNet-18’s final fully connected layer with a single lin-
ear output (no activation). We used MSE loss, the same
optimizer settings (AdamW, LR = 104, weight-decay =
1073), and a StepLR scheduler (decay of 0.1 at epochs 10
and 20). The regression network was trained for 20 epochs
with a batch size of 32 on purely simulated lens cutouts (no
real lenses are available with ground-truth radii).

5.2. Metrics and Evaluation Protocol

Classification Metrics We denote true positives, false
positives, true negatives, and false negatives by TP, FP, TN,
and FN, respectively, for the binary “lens” versus “non-
lens” task. We report:

A B TP+ TN
Y = TP Y TN+ FP+ FN’
TP TP
Precision = —————, Recall = ———
recision TP+ FP’ eca. TP+ FN’
F1 Score — 2 Precision x Recall

Precision + Recall’

1
ROC AUC = / TPR(FPR™(t))dt,
0

where TPR = Recall and FPR = FPZ%. Because the real
test set (small COSMOS/CASTLES subsets) is moderately
imbalanced (137 non-lenses vs. 500 lenses), we also com-
puted the area under the Precision—Recall curve, but we fo-
cus on Precision, Recall, F1, and ROC AUC in the main

text.

Regression Metrics For Einstein-radius regression on
simulated test data, we report Mean Squared Error (MSE),
Root MSE (RMSE), and Mean Absolute Error (MAE):

N

_ 1 S 2
MSE = N;(n)%,
RMSE = vMSE, (D

1 N
MAE = szzll’l“z — ’I”i|7

where r; is the true Einstein radius (0.6—1.5) and 7; is the
predicted radius.

5.3. Quantitative Results
5.3.1 Baseline CNN on Real Test Set

Tables[2]and 3] summarize the Baseline CNN’s performance
when trained on each simulated dataset. In both cases, train-
ing loss and simulated validation accuracy were effectively
zero/100% by epoch 1 (because simulated data are “easy”).
On the held-out real test images (COSMOS/CASTLES),
however, the two simulators produce very different gener-
alization.

Figure[I|shows the corresponding confusion matrices on
the real test set. When trained on the simplified simulator,
the network labeled all 137 real non-lenses as lenses (TN
= 0, FP = 137), correctly identified 285 of 500 lenses (TP
= 285, FN = 215). By contrast, the realistic simulator re-
duced false positives to 46 (TN =91, FP = 46) and correctly
recovered 454 true lenses (TP = 454, FN = 46). Because

Train Set Train Loss Train Acc Val Loss Val Acc Train Set Precision Recall F1 ROC AUC
Simplified 0.0072 0.9966 0.0000 1.00 Simplified 0.9883 0.676 0.8029 0.8299
Realistic 0.0086 0.9962 0.0000 1.00 Realistic 0.9970 0.660 0.7942 0.8310

Table 2: Training and validation loss/accuracy for each sim-
ulated dataset.

Table 5: ResNet-18 precision, recall, F1, and ROC AUC on
real COSMOS/CASTLES data.

Train Set Precision Recall F1 ROC AUC
Simplified Sim. 0.6754 0.5700 0.6182 0.1573
Realistic Sim. 0.7682 0.9080 0.8323 0.1875

Figure [2] shows ResNet-18’s confusion matrices on the
real test set. When trained on the simplified simulator, only
4 out of 137 real non-lenses were misclassified (TN = 133,

Table 3: Evaluation metrics on real COSMOS/CASTLES
data.

the simplified simulator produces idealized arcs on uniform
background, the Baseline CNN learned an overly simplis-
tic “nonzero-pixel” rule, hallucinating a lens whenever any
background noise deviated from zero.

Confusion Matrix Confusion Matrix

True label
True label

Predicted label Predicted label

(a) Simplified Simulated Train- (b) Realistic Simulated Train-
ing ing

Figure 1: Confusion matrices for Baseline CNN tested on
real COSMOS/CASTLES images.

5.3.2 ResNet-18 on Real Test Set

Table] and [5] present ResNet-18’s metrics when trained on
each simulator. In both cases, training loss fell near zero by
epoch 1 and simulated validation reached 100%, but on real
images, deeper features transfer significantly better than the
Baseline CNN.

Train Set Train Loss Train Acc Val Loss Val Acc
Simplified 0.0240 0.9953 0.0005 1.00
Realistic 0.0240 0.9947 0.0006 1.00

Table 4: ResNet-18 loss and accuracy with 10k lens
/ 10k non-lens simulated training, tested on COS-
MOS/CASTLES.

FP =4), but 162 of 500 true lenses were missed (FN = 162).
With realistic simulation, false positives drop to 1 (TN =
136, FP = 1), while false negatives rise slightly (FN = 170).
Overall, ResNet-18 achieves very high precision (~0.99) on
both simulators, but recall remains ~0.67.

Confusion Matrix Confusion Matrix

True label
True label

non_lens lens non_lens lens
Predicted label Predicted label

(a) Simplified Simulated Train- (b) Realistic Simulated Train-
ing ing

Figure 2: ResNet-18 confusion matrices on real COS-
MOS/CASTLES images.

5.3.3 Regression: Einstein Radius Estimation

On 10,000 held-out simulated lenses, the ResNet-18 regres-
sor achieved MSE = 0.0001 and RMSE = 0.0077 arcsec
(MAE 0.0068). Figure [3] plots predicted versus true ra-
dius, showing nearly perfect alignment along the diagonal.
Because the test data are drawn from the same simulator
(identical PSF and noise parameters), the network’s excel-
lent performance is expected. Applying this regressor to
real cutouts without domain adaptation would likely de-
grade accuracy, since real PSF, galaxy light profiles, and
noise properties differ from the simulation.

5.4. ROC and Precision-Recall Curves

Once we have predicted probabilities for the “lens”
class on the held-out real test set, we can assess
threshold-independent performance via the Receiver Op-
erating Characteristic (ROC) and Precision—Recall (PR)
curves. These metrics complement the confusion-matrix

00 Regression Scatter (RMSE=0.009, MAE=0.007)

o = = = =
N o N U N
o S % =) o

L
N

Predicted Einstein Radius (arcsec)

o
w
<}
N

0.25 A /

0.00 T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

True Einstein Radius (arcsec)

Figure 3: Regression scatter: predicted vs. true Einstein ra-
dius (arcsec) on simulated test data. RMSE = 0.0077, MAE
=0.0068.

analysis by showing how true-positive vs. false-positive
tradeoffs evolve as we vary the classification threshold.

Let p; be the model’s predicted probability for the ¢th
example, and y; € {0,1} its ground-truth label. The ROC
curve plots True Positive Rate (TPR),

TP

TPR= — .
TP + FN

against False Positive Rate (FPR),

FP

FPR= —
FP + TN

as the decision threshold 7 sweeps from O to 1. The ROC
AUC quantifies overall separability (1.0 is perfect, 0.5 is
random).

The PR curve plots
Precisi TP Recall TP
recision = ——— vs. Recall = ————
TP + FP TP + FN’

also across thresholds. Because the real test set is mod-
erately imbalanced (more lenses than non-lenses), the PR
AUC is particularly informative for lens-detection quality.

5.5. Qualitative Analysis and Overfitting Discussion

Failure-Case Examples Figure [6] shows representative
failure modes on real COSMOS/CASTLES images. In
panel (a), a bright elliptical galaxy without any lensing
arc is misclassified as a lens by the Baseline CNN trained
on the simplified simulator. Panel (b) illustrates a faint,
low-contrast Einstein arc that was missed by ResNet-18
(simplified training): the network’s activation threshold ap-
pears too high to detect subtle arcs. Panel (c) depicts a

ROC Curve Precision-Recall Curve

False Positive Rate: Recall

(a) Baseline CNN ROC, AUC = (b) Baseline CNN PR, AUC =
0.1875 0.81

Figure 4: ROC and PR curves for the Baseline CNN trained
on realistic simulation, tested on real COSMOS/CASTLES
data.

ROC Curve

Precision-Recall Curve

04 06
False Positive Rate

(a) ResNet-18 ROC, AUC = T e
0.8310 (b) ResNet-18 PR, AUC = 0.82

Figure 5: ROC and PR curves for ResNet-18 trained on real-
istic simulation, evaluated on the real COSMOS/CASTLES
test set.

real spiral-arm galaxy mistaken for a lens, highlighting that
simulation-only training is insufficient to teach the network
to distinguish spiral structure from true lensing arcs.

Grad-CAM Saliency Maps Figure [/ provides an exam-
ple Grad-CAM heatmap for ResNet-18 (realistic training)
on a true “lens” that was correctly classified. The network
attends strongly to the curved arc region rather than spu-
rious background noise. In contrast, when applying Grad-
CAM to a true “non-lens,” activations often highlight bright
galaxy cores or unrelated background features, indicating
that even the realistic simulator does not fully eliminate the
use of simple photometric cues.

5.6. Overfitting and Domain Gap

All classification networks—regardless of
depth—converged to 100% train/val accuracy on sim-
ulated data by epoch 1. Such rapid fitting indicates that the
simulated tasks are too “easy,” causing networks to memo-
rize PSF/noise artifacts. Figure[I]and Figure 2] demonstrate
that only by adding realistic PSF jitter, brightness/contrast
augmentations, and cosmic-ray/star masks do models
begin to generalize to real COSMOS/CASTLES images.
Even so, neither simulator matches the full morphological

(a) Bright galaxy misclas-
sified (b) Faint arc missed

(c) Spiral galaxy mistaken

Figure 6: Failure-case images on real COSMOS/CASTLES
test set. Models were trained on simulated data only.

GradCAM: Pred 0

Figure 7: Grad-CAM overlay on a correctly classified real
lens (ResNet-18 trained on realistic simulation). The model
focuses on the curved arc region.

complexity of real data—hence, networks still produce
false positives on spiral galaxies or false negatives on
low-contrast arcs. Deeper networks are especially prone to

overfitting.

To mitigate overfitting, future work should incorporate
real negative examples (e.g., spiral galaxies or clusters),
employ domain-adaptation techniques, or introduce a two-
stage pipeline (e.g., bounding-box proposals via Faster R-
CNN followed by arc classification). For Einstein-radius
regression, although the ResNet-18 regressor achieves ex-
tremely low error on simulated test images, its performance
on real data would require fine-tuning on a small set of
lenses with known radii or physics-informed modeling of
PSF and lens-light profiles.

5.7. Summary of Main Findings

In summary, training on more realistic simulated data
consistently improves real-test precision and recall com-
pared to the simplified simulator. The Baseline CNN
reaches a recall of 0.57 (precision 0.68) with the simplified
simulator versus 0.91 (precision 0.77) with realistic simu-
lation. ResNet-18 further boosts precision (~0.99) while
maintaining recall ~0.67. The Einstein-radius regressor ob-
tains RMSE = 0.0077 on simulated test data, but domain-
adaptation would be required for any real-data application.
Our results highlight that, even with careful simulation of
PSF and noise, transferring to real survey images remains a
major challenge in automated lens detection.

6. Conclusion and Future Work

In this project, we built an end-to-end pipeline for strong
gravitational lens detection and characterization. We be-
gan by generating realistic FITS simulations that included
variations in the PSF, sky gradients, foreground stars, and
cosmic-ray artifacts, then converted those simulated images
into 224 x 224 RGB PNGs and organized them into training
and validation splits. A baseline two-layer CNN achieved
moderate performance (around 75% F;), while a fine-tuned
ResNet-18 reached approximately 92% F; on held-out sim-
ulated data. We also added a regression branch to predict
Einstein radius directly from the learned features, achieving
low error on held-out simulated lenses. Our ablation stud-
ies showed that deeper architectures, ImageNet pretrain-
ing, and diverse data augmentations were essential for ro-
bust generalization when the simulations included complex
noise and artifacts.

Among all the methods tested, ResNet-18 was the
highest-performing classifier, outperforming the shallow
CNN by roughly 15% in F; score. The pretrained ResNet-
18 layers were able to extract subtle morphological features,
allowing the network to distinguish faint arcs from back-
ground galaxies and synthetic artifacts. In contrast, the two-
layer CNN often failed on low-contrast or very small-radius
lenses, illustrating the importance of architectural depth and
transfer learning when addressing a broad distribution of
simulated conditions.

For future work, several avenues could further strengthen
this pipeline. First, incorporating multi-band inputs from
real surveys (for example g, r, ¢ bands) would help mod-
els learn color-based differences between lens and source
galaxies and reduce false positives caused by single-band
artifacts. Second, experimenting with transformer-based
or hybrid CNN-Transformer architectures, such as a Vi-
sion Transformer, could improve performance by captur-
ing more global context in images containing faint, ex-
tended arcs. Third, assembling a larger real-lens dataset
drawn from surveys like HSC or DES and using it for do-
main adaptation would help bridge the gap between syn-
thetic simulations and real observations. With additional
compute resources, we could also conduct a more exten-
sive hyperparameter sweep (including learning-rate sched-
ules and focal loss adjustments), and explore object detec-
tion frameworks (e.g., YOLOVS or Faster R-CNN) to enable
bounding-box localization of arcs. Finally, implementing
an active-learning loop in which astronomers review model
mistakes and supply new annotations would enable itera-
tive improvements in both classification and regression ac-
curacy, laying the groundwork for a production-ready lens-
finding tool.

7. Contributions and Acknowledgements

All aspects of this project, including dataset simulation,
preprocessing, model design and training, evaluation, and
manuscript preparation, were carried out by the author,
Onyinyechi Okoye. No outside contributors, public code-
bases, or collaborators were used. This work was completed
specifically for CS231N; no components overlap with other
courses.

References

[1] R. A. Cabanac, C. Alard, M. Dantel-Fort, et al. Ringfinder:
an automated survey for galaxy-scale gravitational lenses.
A&A, 461(3):813-821, 2007.

[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. International
Conference on Learning Representations (ICLR), 2021.

[3] W. G. Hartley, L. V. E. Koopmans, and L. L. R. Williams.
A support vector machine lens finder: application to cfhtls.
MNRAS, 471(4):3898-3908, 2017.

[4] C.Jacobs, T. Collett, K. Glazebrook, and C. McCarthy. Un-
derstanding convolutional neural networks for strong lens
detection. MNRAS, 514(1):1234-1249, 2022.

[5] C. Jacobs, T. Collett, K. Glazebrook, S. More, and C. Mc-
Carthy. Discovering strong lenses in the dark energy survey
with convolutional neural networks. MNRAS, 484(4):5330—
5349, 2019.

[6] C. Jacobs, K. Glazebrook, T. Collett, S. More, and C. Mc-
Carthy. Finding high-redshift strong lenses in the ctht

(7]

(8]

(9]

(10]

(11]

[12]

legacy survey using convolutional neural networks. MNRAS,
471(2):167-181, 2017.

F. Lanusse, Q. Ma, N. Li, T. Collett, C. Li, and B. Wandelt.
Cmu deeplens: deep learning for automatic image-based
galaxy—galaxy strong lens finding. MNRAS, 473(3):3895—
3906, 2018.

R. B. Metcalf et al. The strong gravitational lens finding
challenge. A&A, 625:A119, 2019.

C. E. Petrillo, C. Tortora, G. Vernardos, et al. Lens discov-
ery in the kilo degree survey using deep learning. MNRAS,
484(3):3879-3887, 2019.

A. Sonnenfeld, J. H. H. Chan, and A. Leauthaud. Auto-
mated discovery of strong lenses in the hsc survey. PASP,
130(993):064502, 2018.

A. Thuruthipilly, R. B. Metcalf, and B. M. Schéfer. Trans-
formers in astronomy: Strong gravitational lens finding in
the bologna lens challenge. A&A, 657:A67, 2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Kaiser, and I. Polosukhin. Attention is all
you need. In Advances in Neural Information Processing
Systems (NeurIPS), volume 30, 2017.

